Part Number Hot Search : 
50015 AS8223 IRG4PC LVC125A BH6584KV BQ20Z90 BP51L12 ZFVG07C2
Product Description
Full Text Search
 

To Download IRHG563110 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD - 94246B
IRHG567110 RADIATION HARDENED 100V, Combination 2N-2P-CHANNEL RAD-Hard HEXFET POWER MOSFET 4# TECHNOLOGY THRU-HOLE (MO-036AB)
TM (R)
Product Summary
Part Number IRHG567110 IRHG563110 IRHG567110 IRHG563110 Radiation Level RDS(on) 100K Rads (Si) 0.29 300K Rads (Si) 0.29 100K Rads (Si) 0.96 300K Rads (Si) 0.96 ID CHANNEL 1.6A N 1.6A N -0.96A P -0.96A P
MO-036AB
International Rectifier's RAD-HardTM HEXFET(R) MOSFET Technology provides high performance power MOSFETs for space applications. This technology has over a decade of proven performance and reliability in satellite applications. These devices have been characterized for both Total Dose and Single Event Effects (SEE). The combination of low RDS(on) and low gate charge reduces the power losses in switching applications such as DC to DC converters and motor control. These devices retain all of the well established advantages of MOSFETs such as voltage control, fast switching, ease of paralleling and temperature stability of electrical parameters.
Features:
n n n n n n n n n
Single Event Effect (SEE) Hardened Low RDS(on) Low Total Gate Charge Proton Tolerant Simple Drive Requirements Ease of Paralleling Hermetically Sealed Ceramic Package Light Weight
Absolute Maximum Ratings (Per Die)
Parameter
ID @ VGS = 12V, TC = 25C ID @ VGS = 12V, TC = 100C IDM PD @ TC = 25C VGS EAS IAR EAR dv/dt TJ T STG Continuous Drain Current Continuous Drain Current Pulsed Drain Current Max. Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Peak Diode Recovery dv/dt Operating Junction Storage Temperature Range Lead Temperature Weight For footnotes refer to the last page
Pre-Irradiation
N-Channel
1.6 1.0 6.4 1.4 0.011 20 130 1.6 0.14 6.5 -55 to 150
o
P-Channel
-0.96 -0.6 -3.84 1.4
0.011
Units A
W
W/C
20 200 -0.96 0.14 7.1
V mJ A mJ V/ns
C
300 (0.63 in./1.6 mm from case for 10s) 1.3 (Typical)
g
www.irf.com
1
09/05/02
IRHG567110
Pre-Irradiation
Electrical Characteristics For Each N-Channel Device @ Tj = 25C (Unless Otherwise Specified)
Parameter
BVDSS Drain-to-Source Breakdown Voltage BV DSS /T J Temperature Coefficient of Breakdown Voltage RDS(on) Static Drain-to-Source On-State Resistance VGS(th) Gate Threshold Voltage g fs Forward Transconductance IDSS Zero Gate Voltage Drain Current
Min
100 -- -- 2.0 1.0 -- -- -- -- -- -- -- -- -- -- -- --
Typ Max Units
-- 0.14 -- -- -- -- -- -- -- -- -- -- -- -- -- -- 10 -- -- 0.29 4.0 -- 10 25 100 -100 17 4.4 3.9 21 16 30 15 -- V V/C V S( ) A
Test Conditions
V GS = 0V, ID = 1.0mA Reference to 25C, ID = 1.0mA VGS = 12V, ID = 1.0A VDS = VGS, ID = 1.0mA VDS > 15V, IDS = 1.0A VDS= 80V, VGS= 0V VDS = 80V, VGS = 0V, TJ =125C VGS = 20V VGS = -20V VGS =12V, ID = 1.6A, VDS = 50V VDD = 50V, ID = 1.6A, VGS =12V, RG = 7.5
IGSS IGSS Qg Q gs Q gd td(on) tr td(off) tf LS + LD
Gate-to-Source Leakage Forward Gate-to-Source Leakage Reverse Total Gate Charge Gate-to-Source Charge Gate-to-Drain (`Miller') Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Inductance
nA
nC
ns
nH Measured from Drain lead (6mm /0.25in.
from package) to Source lead (6mm /0.25in. from package) with Source wires internally bonded from Source Pin to Drain Pad
Ciss Coss Crss
Input Capacitance Output Capacitance Reverse Transfer Capacitance
-- -- --
370 110 3.4
-- -- --
pF
VGS = 0V, VDS = 25V f = 1.0MHz
Source-Drain Diode Ratings and Characteristics (Per Die)
Parameter
IS ISM VSD t rr Q RR ton Continuous Source Current (Body Diode) Pulse Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time
Min Typ Max Units
-- -- -- -- -- -- -- -- -- -- 1.6 6.4 1.2 110 380
Test Conditions
A
V nS nC Tj = 25C, IS = 1.6A, VGS = 0V Tj = 25C, IF = 1.6A, di/dt 100A/s VDD 25V
Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD.
Thermal Resistance (Per Die)
Parameter
RthJA Junction-to-Ambient
Min Typ Max Units
-- -- 90
C/W
Test Conditions
Typical socket mount
Note: Corresponding Spice and Saber models are available on the G&S Website. For footnotes refer to the last page
2
www.irf.com
Pre-Irradiation
IRHG567110
Electrical Characteristics For Each P-Channel Device @ Tj = 25C (Unless Otherwise Specified)
Parameter
BVDSS Drain-to-Source Breakdown Voltage BV DSS /T J Temperature Coefficient of Breakdown Voltage RDS(on) Static Drain-to-Source On-State Resistance VGS(th) Gate Threshold Voltage g fs Forward Transconductance IDSS Zero Gate Voltage Drain Current
Min
-100 -- -- -2.0 1.1 -- -- -- -- -- -- -- -- -- -- -- --
Typ Max Units
-- -0.14 -- -- -- -- -- -- -- -- -- -- -- -- -- -- 10 -- -- 0.96 -4.0 -- -10 -25 -100 100 13.4 3.7 3.0 21 17 40 90 -- V V/C V S( ) A
Test Conditions
VGS = 0V, ID = -1.0mA Reference to 25C, ID = -1.0mA VGS = -12V, ID = -0.6A VDS = VGS, ID = -1.0mA VDS > -15V, IDS = -0.6A VDS= -80V, VGS= 0V VDS = -80V, VGS = 0V, TJ =125C VGS = - 20V VGS = 20V VGS = -12V, ID = -0.96A, VDS = -50V VDD = -50V, ID = -0.96A, VGS = -12V, RG = 7.5
IGSS IGSS Qg Q gs Q gd td(on) tr td(off) tf LS + LD
Gate-to-Source Leakage Forward Gate-to-Source Leakage Reverse Total Gate Charge Gate-to-Source Charge Gate-to-Drain (`Miller') Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Inductance
nA
nC
ns
nH Measured from Drain lead (6mm /0.25in.
from package) to Source lead (6mm /0.25in. from package) with Source wires internally bonded from Source Pin to Drain Pad
Ciss Coss Crss
Input Capacitance Output Capacitance Reverse Transfer Capacitance
-- -- --
390 100 7.0
-- -- --
pF
VGS = 0V, VDS = 25V f = 1.0MHz
Source-Drain Diode Ratings and Characteristics (Per Die)
Parameter
IS ISM VSD t rr Q RR ton Continuous Source Current (Body Diode) Pulse Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time
Min Typ Max Units
-- -- -- -- -- -- -- -- -- -- -0.96 -3.84 -5.0 86 240
Test Conditions
A
V nS nC Tj = 25C, IS = -0.96A, VGS = 0V Tj = 25C, IF = -0.96A, di/dt -100A/s VDD -25V
Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD.
Thermal Resistance (Per Die)
Parameter
RthJA Junction-to-Ambient
Min Typ Max Units
-- -- 90
C/W
Test Conditions
Typical socket mount
Note: Corresponding Spice and Saber models are available on the G&S Website. For footnotes refer to the last page
www.irf.com
3
IRHG567110
Radiation Characteristics Pre-Irradiation
International Rectifier Radiation Hardened MOSFETs are tested to verify their radiation hardness capability. The hardness assurance program at International Rectifier is comprised of two radiation environments. Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-39 package. Both pre- and post-irradiation performance are tested and specified using the same drive circuitry and test conditions in order to provide a direct comparison.
Table 1. Electrical Characteristics For Each N-Channel Device @ Tj = 25C, Post Total Dose Irradiation
Parameter
BVDSS V GS(th) IGSS IGSS IDSS RDS(on) RDS(on) VSD Drain-to-Source Breakdown Voltage Gate Threshold Voltage Gate-to-Source Leakage Forward Gate-to-Source Leakage Reverse Zero Gate Voltage Drain Current Static Drain-to-Source On-State Resistance (TO-39) Static Drain-to-Source On-State Resistance (MO-036AB) Diode Forward Voltage
100K Rads(Si)1
300K Rads (Si)2
Units V nA A V
Test Conditions
VGS = 0V, ID = 1.0mA VGS = VDS, ID = 1.0mA VGS = 20V VGS = -20 V VDS= 80V, VGS =0V VGS = 12V, ID = 1.0A VGS = 12V, ID = 1.0A VGS = 0V, IS =1.6A
Min 100 2.0 -- -- -- -- -- --
Max -- 4.0 100 -100 10 0.226 0.29 1.2
Min 100 2.0 -- -- -- -- -- --
Max -- 4.0 100 -100 10 0.246 0.31 1.2
1. Part number IRHG567110 2. Part number IRHG563110
International Rectifier radiation hardened MOSFETs have been characterized in heavy ion environment for Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2.
Table 2. Single Event Effect Safe Operating Area (Per Die)
Ion Br I LET MeV/(mg/cm2)) 36.7 59.8 Energy (MeV) 309 341 VDS (V) Range (m) @VGS=0V @VGS=-5V @VGS=-10V @VGS=-12.5V @VGS=-15V @VGS=-20V 80 39.5 100 100 100 100 100 32.5 100 100 100 90 25 20
120 100 80 60 40 20 0 0 -5 -10 VGS -15 -20
VDS
Br I
Fig a. Single Event Effect, Safe Operating Area
For footnotes refer to the last page
4
www.irf.com
Radiation Characteristics Pre-Irradiation
IRHG567110
International Rectifier Radiation Hardened MOSFETs are tested to verify their radiation hardness capability. The hardness assurance program at International Rectifier is comprised of two radiation environments. Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-39 package. Both pre- and post-irradiation performance are tested and specified using the same drive circuitry and test conditions in order to provide a direct comparison.
Table 1. Electrical Characteristics For Each P-Channel Device @ Tj = 25C, Post Total Dose Irradiation
Parameter
BVDSS VGS(th) IGSS IGSS IDSS RDS(on) RDS(on) VSD Drain-to-Source Breakdown Voltage Gate Threshold Voltage Gate-to-Source Leakage Forward Gate-to-Source Leakage Reverse Zero Gate Voltage Drain Current Static Drain-to-Source On-State Resistance (TO-39) Static Drain-to-Source On-State Resistance (MO-036AB) Diode Forward Voltage
100K Rads(Si)1
300K Rads (Si)2
Units V nA A V
Test Conditions
VGS = 0V, ID = -1.0mA VGS = VDS, ID = -1.0mA VGS = -20V V GS = 20 V VDS=-80V, VGS =0V VGS = -12V, ID =-0.6A VGS = -12V, ID =-0.6A VGS = 0V, IS = -0.96A
Min -100 -2.0 -- -- -- -- -- --
Max -- -4.0 -100 100 -10 0.916 0.96 -3.5
Min -100 -2.0 -- -- -- -- -- --
Max -- -4.0 -100 100 -10 0.936 0.98 -3.5
1. Part number IRHG567110 2. Part number IRHG563110
International Rectifier radiation hardened MOSFETs have been characterized in heavy ion environment for Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2.
Table 2. Single Event Effect Safe Operating Area (Per Die)
Ion Br I Au LET MeV/(mg/cm2)) 37.3 59.9 82.3 Energy (MeV) 285 344 351 VDS (V) Range (m) @VGS=0V @VGS=5V @VGS=10V @VGS=15V @VGS=17.5V @VGS=20V -100 36.8 -100 -100 -100 -100 -100 32.7 -100 -100 -100 -100 -75 -25 -- 28.5 -100 -100 -100 -30 --
-120 -100 -80 -60 -40 -20 0 0 5 10 VGS 15 20
Br I Au
Fig a. Single Event Effect, Safe Operating Area
For footnotes refer to the last page
www.irf.com
VDS
5
IRHG567110 N-Channel Q1,Q3
10
Pre-Irradiation
I D , Drain-to-Source Current (A)
I D , Drain-to-Source Current (A)
VGS 15V 12V 10V 9.0V 8.0V 7.0V 6.0V BOTTOM 5.0V TOP
10
VGS 15V 12V 10V 9.0V 8.0V 7.0V 6.0V BOTTOM 5.0V TOP
5.0V
1
1
5.0V
0.1 0.1
20s PULSE WIDTH T = 25 C
J 1 10 100
0.1 0.1
20s PULSE WIDTH T = 150 C
J 1 10 100
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
10
2.5
TJ = 150 C
R DS(on) , Drain-to-Source On Resistance (Normalized)
I D , Drain-to-Source Current (A)
ID = 1.6A
2.0
TJ = 25 C
1
1.5
1.0
0.5
0.1 5.0
V DS = 50V 20s PULSE WIDTH 6.0 5.5 6.5
0.0 -60 -40 -20
VGS = 12V
0 20 40 60 80 100 120 140 160
VGS , Gate-to-Source Voltage (V)
TJ , Junction Temperature( C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance Vs. Temperature
6
www.irf.com
Pre-Irradiation N-Channel Q1,Q3
800
IRHG567110
VGS , Gate-to-Source Voltage (V)
C, Capacitance (pF)
600
VGS = 0V, f = 1MHz Ciss = Cgs + Cgd , Cds SHORTED Crss = Cgd Coss = Cds + Cgd
20
ID = 1.6A
16
VDS = 80V VDS = 50V VDS = 20V
400
Ciss C oss
12
8
200
4
C rss
0 1 10 100
0 0 4
FOR TEST CIRCUIT SEE FIGURE 13
12 8 16
VDS , Drain-to-Source Voltage (V)
QG , Total Gate Charge (nC)
Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage
10
10
TJ = 150 C
OPERATION IN THIS AREA LIMITED BY RDS(on)
ISD , Reverse Drain Current (A)
ID, Drain-to-Source Current (A)
1
1
TJ = 25 C
1ms
0.1 0.4
V GS = 0 V
0.6 0.8 1.0 1.2 1.4
Tc = 25C Tj = 150C Single Pulse 0.1 1 10
10ms
VSD ,Source-to-Drain Voltage (V)
100
1000
VDS , Drain-toSource Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
www.irf.com
7
IRHG567110 N-Channel Q1,Q3
1.6
Pre-Irradiation
V DS VGS
RD
D.U.T.
+
1.3
RG
I D , Drain Current (A)
-V DD
1.0
VGS
Pulse Width 1 s Duty Factor 0.1 %
0.6
Fig 10a. Switching Time Test Circuit
VDS 90%
0.3
0.0 25 50 75 100 125 150
TC , Case Temperature ( C)
10% VGS
td(on) tr t d(off) tf
Fig 9. Maximum Drain Current Vs. Case Temperature
Fig 10b. Switching Time Waveforms
100 D = 0.50
Thermal Response (Z thJA )
0.20 10 0.10 0.05 0.02 0.01 1
SINGLE PULSE (THERMAL RESPONSE) 0.1 0.0001
Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = P DM x Z thJA + TA 10 100 0.1 1 1000
P DM t1 t2
0.001
0.01
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
8
www.irf.com
Pre-Irradiation N-Channel Q1,Q3
EAS , Single Pulse Avalanche Energy (mJ)
300
IRHG567110
15V
250
ID 0.7A 1.0A BOTTOM 1.6A TOP
VDS
L
D R IV E R
200
RG
D .U .T.
IA S tp
+ V - DD
150
A
VGS 20V
0 .01
100
Fig 12a. Unclamped Inductive Test Circuit
50
0 25 50 75 100 125 150
V (B R )D S S tp
Starting T , Junction Temperature( C) J
Fig 12c. Maximum Avalanche Energy Vs. Drain Current
IAS
Fig 12b. Unclamped Inductive Waveforms
Current Regulator Same Type as D.U.T.
50K
QG
12V
.2F .3F
12 V
QGS VG QGD
VGS
3mA
D.U.T.
+ V - DS
Charge
IG
ID
Current Sampling Resistors
Fig 13a. Basic Gate Charge Waveform
Fig 13b. Gate Charge Test Circuit
www.irf.com
9
IRHG567110 P-Channel Q2,Q4
10
Pre-Irradiation
-5.0V
-I D , Drain-to-Source Current (A)
-I D , Drain-to-Source Current (A)
VGS -15V -12V -10V -9.0V -8.0V -7.0V -6.0V BOTTOM -5.0V TOP
10
VGS -15V -12V -10V -9.0V -8.0V -7.0V -6.0V BOTTOM -5.0V TOP
-5.0V
1
1
0.1 0.1
20s PULSE WIDTH T = 25 C
J 1 10 100
0.1 0.1
20s PULSE WIDTH T = 150 C
J 1 10 100
-VDS , Drain-to-Source Voltage (V)
-VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
10
2.5
R DS(on) , Drain-to-Source On Resistance (Normalized)
ID = -0.96A
-I D , Drain-to-Source Current (A)
2.0
TJ = 25 C TJ = 150 C
1.5
1.0
0.5
1 5.0
V DS = -50V 20s PULSE WIDTH 5.6 5.2 5.4 5.8
0.0 -60 -40 -20
VGS = -12V
0 20 40 60 80 100 120 140 160
-VGS , Gate-to-Source Voltage (V)
TJ , Junction Temperature( C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance Vs. Temperature
10
www.irf.com
Pre-Irradiation P-Channel Q2,Q4
600
IRHG567110
500
-VGS , Gate-to-Source Voltage (V)
VGS = Ciss = Crss = Coss = 0V, f = 1MHz Cgs + Cgd , Cds SHORTED Cgd Cds + Cgd
20
ID = -0.96A
16
C, Capacitance (pF)
VDS =-80V VDS =-50V VDS =-20V
400
Ciss
12
300
8
200
C oss
4
100
C rss
0 1 10 100
0 0 2 4
FOR TEST CIRCUIT SEE FIGURE 13
8 10 6 12
-VDS , Drain-to-Source Voltage (V)
Q G , Total Gate Charge (nC)
Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage
10
10 OPERATION IN THIS AREA LIMITED BY R DS(on)
-ISD , Reverse Drain Current (A)
TJ = 150 C
1
-I D, Drain-to-Source Current (A)
1
1ms
TJ = 25 C
0.1 1.0
V GS = 0 V
2.0 3.0 4.0 5.0
Tc = 25C Tj = 150C Single Pulse 0.1 1 10
10ms
100
1000
-VSD ,Source-to-Drain Voltage (V)
-VDS , Drain-toSource Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
www.irf.com
11
IRHG567110 P-Channel Q2,Q4
1.0
Pre-Irradiation
V DS VGS
RD
0.8
D.U.T.
+
-ID , Drain Current (A)
0.6
VGS Pulse Width 1 s Duty Factor 0.1 %
0.4
Fig 10a. Switching Time Test Circuit
0.2
td(on) tr t d(off) tf
VGS
0.0 25 50 75 100 125 150
10%
TC , Case Temperature ( C)
90%
Fig 9. Maximum Drain Current Vs. Case Temperature
VDS
Fig 10b. Switching Time Waveforms
100 D = 0.50
Thermal Response (Z thJA )
0.20 10 0.10 0.05 0.02 0.01 1
SINGLE PULSE (THERMAL RESPONSE) 0.1 0.0001
Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = P DM x Z thJA + TA 10 100 0.1 1
P DM t1 t2 1000
0.001
0.01
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
12
www.irf.com
-
RG
V DD
Pre-Irradiation P-Channel Q2,Q4
VDS
L
IRHG567110
500
EAS , Single Pulse Avalanche Energy (mJ)
RG
D .U .T.
IA S
VD D A D R IV E R
400
-20V VGS
ID -0.4A -0.6A BOTTOM -0.96A TOP
tp
0.0 1
300
15V
200
Fig 12a. Unclamped Inductive Test Circuit
100
IAS
0 25 50 75 100 125 150
Starting TJ , Junction Temperature ( C)
Fig 12c. Maximum Avalanche Energy Vs. Drain Current
tp V (BR)DSS
Fig 12b. Unclamped Inductive Waveforms
Current Regulator Same Type as D.U.T.
50K
QG
-12V 12V
.2F .3F
-12V
QGS VG QGD
VGS
-3mA
Charge
IG
ID
Current Sampling Resistors
Fig 13a. Basic Gate Charge Waveform
Fig 13b. Gate Charge Test Circuit
www.irf.com
+
D.U.T.
-
VDS
13
IRHG567110
Pre-Irradiation
Footnotes:
Repetitive Rating; Pulse width limited by
maximum junction temperature. VDD = 25V, starting TJ = 25C, L= 100mH, Peak IL = 1.6A, VGS = 12V ISD 1.6A, di/dt 340A/s, VDD 100V, TJ 150C Pulse width 300 s; Duty Cycle 2%
Total Dose Irradiation with VGS Bias.
12 volt VGS applied and VDS = 0 during irradiation per MIL-STD-750, method 1019, condition A Total Dose Irradiation with VDS Bias. 80 volt VDS applied and VGS = 0 during irradiation per MlL-STD-750, method 1019, condition A VDD = - 25V, starting TJ = 25C, L= 430mH, Peak IL = - 0.96A, VGS = -12V ISD - 0.96A, di/dt - 290A/s, VDD -100V, TJ 150C
Case Outline and Dimensions -- MO-036AB
Q4 Q1
Q3 Q2
Q4 Q1
Q3 Q2
CHANNELS N Ch.- Q1, Q3 P Ch.- Q2, Q4
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 09/02
14
www.irf.com


▲Up To Search▲   

 
Price & Availability of IRHG563110

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X